Casio CLASSPAD 330 Bedienungsanleitung Seite 144

  • Herunterladen
  • Zu meinen Handbüchern hinzufügen
  • Drucken
  • Seite
    / 957
  • Inhaltsverzeichnis
  • LESEZEICHEN
  • Bewertet. / 5. Basierend auf Kundenbewertungen
Seitenansicht 143
2006030120090601
2-4-16
Calculs de fonctions
I
Fonction Delta de Dirac
« delta » est la fonction delta de Dirac. La fonction delta sert à évaluer des expressions
numériques de la façon suivante.
Les expressions non-numériques passées par la fonction delta ne sont pas évaluées.
L’intégrale d’une fonction delta linéaire est une fonction Heaviside.
Syntaxe :
delta(
x
)
x
: variable ou nombre
Exemples :
I
Fonction delta
n
ième
La fonction delta
n
ième
est la
n
ième
différentielle de la fonction delta.
Syntaxe :
delta(
x
,
n
)
x
: variable ou nombre
n
: nombre de différentielles
Exemples :
0,
x
x
0
D
(
x
) =
{
D
(
x
),
x
= 0
0,
x
x
0
D
(
x
) =
{
D
(
x
),
x
= 0
Seitenansicht 143
1 2 ... 139 140 141 142 143 144 145 146 147 148 149 ... 956 957

Kommentare zu diesen Handbüchern

Keine Kommentare