Casio ALGEBRA FX2.0 series Bedienungsanleitung Seite 1

Stöbern Sie online oder laden Sie Bedienungsanleitung nach Software Casio ALGEBRA FX2.0 series herunter. Casio ALGEBRA FX2.0 series User Manual Benutzerhandbuch

  • Herunterladen
  • Zu meinen Handbüchern hinzufügen
  • Drucken
  • Seite
    / 22
  • Inhaltsverzeichnis
  • LESEZEICHEN
  • Bewertet. / 5. Basierend auf Kundenbewertungen
Seitenansicht 0
Differential Equations (DIFF EQ)
Software for the ALGEBRA FX 2.0
1. Using the DIFF EQ Mode
2. Differential Equations of the First Order
3. Linear Differential Equations of the Second Order
4. Differential Equations of the Nth Order
5. System of First Order Differential Equations
Seitenansicht 0
1 2 3 4 5 6 ... 21 22

Inhaltsverzeichnis

Seite 1 - 1. Using the DIFF EQ Mode

Differential Equations (DIFF EQ)Software for the ALGEBRA FX 2.01. Using the DIFF EQ Mode2. Differential Equations of the First Order3. Linear Differen

Seite 2

2-7Differential Equations of the First Orderk OthersTo solve a general differential equation of the first order, simply input the equation andspecify

Seite 3 - Using the DIFF EQ Mode

2-8Differential Equations of the First OrderExample To graph the solution of the first order differential equationdy/dx = –cos x, x0 = 0, y0 = 1, –5 &

Seite 4

3-1Linear Differential Equations of the Second Order3. Linear Differential Equations of the SecondOrderDescriptionTo solve a linear differential equat

Seite 5 - , y0) = (0,1)

3-2Linear Differential Equations of the Second OrderExample To graph the solution of the linear differential equation of the secondorder y앨 + 9y = sin

Seite 6

4-1Differential Equations of the Nth Order4. Differential Equations of the Nth OrderYou can solve differential equations of the first through ninth or

Seite 7 - 0 = 0, y0 = –2, –5

4-2Differential Equations of the Nth OrderExample To graph the solution of the differential equation of the fourth orderbelowy(4) = 0, x0 = 0, y0 = 0,

Seite 8

4-3Differential Equations of the Nth Orderk Converting a High-order Differential Equation to a System of the FirstOrder Differential EquationsYou can

Seite 9 - 0 = 0, y0 = 1, –5

Example Express the differential equation below as a set of first orderdifferential equations.y(3) = sinx – y쎾 – y앨, x0 = 0, y0 = 0, y쎾0 = 1, y앨0 = 0.

Seite 10

5. System of First Order Differential EquationsA system of first order differential equations, for example, has dependent variables (y1), (y2),...,

Seite 11 - Result Screen

Example 1 To graph the solution of first order differential equations with twounknowns below.(y1)쎾= (y2), (y2)쎾 = – (y1) + sin x, x0 = 0, (y1)0 = 1, (

Seite 12 - 0, y0, y쎾0

1-1Using the DIFF EQ Mode1. Using the DIFF EQ ModeYou can solve differential equations numerically and graph the solutions. The generalprocedure for s

Seite 13

Example 2 To graph the solution of the system of first order differential equationsbelow.(y1)쎾 = (2 – (y2)) (y1)(y2)쎾 = (2 (y1) – 3) (y2)x0 = 0, (y1)0

Seite 14 - (n))j(Y9)

k Further AnalysisTo further analyze the result, we can graph the relation between (y1) and (y2).Procedure1 m STAT2 List 1, List 2, and List 3 contain

Seite 15

Important!• This calculator may abort calculation part way through when an overflow occurs part waythrough the calculation when calculated solutions c

Seite 16 - Order Differential Equations

1-2Using the DIFF EQ Mode6. Specify variables to graph or to store in LIST.Press 5(SET) and select c(Output) to display the list setting screen.x, y,

Seite 17 - (n)) b-3(y(n))cw

2-1Differential Equations of the First Order2. Differential Equations of the First Orderk Separable EquationDescriptionTo solve a separable equation,

Seite 18

2-2Differential Equations of the First OrderExample To graph the solutions of the separable equation dy/dx = y2 –1,x0 = 0, y0 = {0, 1}, –5 <<<

Seite 19

2-3Differential Equations of the First Orderk Linear EquationTo solve a linear equation, simply input the equation and specify initial values.dy/dx +

Seite 20

2-4Differential Equations of the First OrderExample To graph the solution of the linear equation dy/dx + xy = x, x0 = 0, y0 = –2, –5 <<<<&

Seite 21 - 1), and (y2), respectively

2-5Differential Equations of the First Orderk Bernoulli equationTo solve a Bernoulli equation, simply input the equation and specify the power of y an

Seite 22 - Important!

2-6Differential Equations of the First OrderExample To graph the solution of the Bernoulli equation dy/dx – 2y = –y2,x0 = 0, y0 = 1, –5 <<<&l

Kommentare zu diesen Handbüchern

Keine Kommentare